0%

Ubuntu下用TensorFlow Object Detection API测试训练的模型

得到训练的模型后,进行测试前需要进行inference graph 的pb文件导出,本文记载了详细的操作步骤,以及最终的模型加载直到最终的检测结果

Ubuntu20.04下成功配置TensorFlow Object Detection API 教程

Ubuntu下用TensorFlow Object Detection API训练自己的数据

Ubuntu下用TensorFlow Object Detection API测试自己的数据

经过之前的训练后,会在workspace/training_demo/models/my_ssd_inception_v2保存最终生成的模型文件。

准备好你要测试的图像文件,接下来我们开始测试。

ckpt模型转换pb模型

打开终端,激活虚拟环境

1
source activate python370

复制TensorFlow/models/research/object_detection/export_inference_graph.py文件到training_demo文件夹

找出模型文件夹下step最小的ckpt

在终端cd到training_demo文件夹,运行下面的命令

1
python export_inference_graph.py --input_type image_tensor --pipeline_config_path models/my_ssd_inception_v2/pipeline.config --trained_checkpoint_prefix models/my_ssd_inception_v2/model.ckpt-194120 --output_directory trained-inference-graphs/output_inference_graph_v1.pb

运行后在生成的trained-inference-graphs/output_inference_graph_v1.pb文件夹下可以看到结果。

测试pb模型得到结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util


MODEL_NAME = 'workspace/training_demo/trained-inference-graphs/output_inference_graph_v1.pb'


# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = 'workspace/training_demo/annotations/label_map.pbtxt'

# Number of classes to detect
NUM_CLASSES = 5


# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')


# Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)



data_dir = 'workspace/training_demo/test_data'

# Detection
with detection_graph.as_default():
with tf.compat.v1.Session(graph=detection_graph) as sess:
for filename in os.listdir(data_dir):
image_np = np.array(Image.open(os.path.join(data_dir, filename)))
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Extract image tensor
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Extract detection boxes
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Extract detection scores
scores = detection_graph.get_tensor_by_name('detection_scores:0')
# Extract detection classes
classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Extract number of detectionsd
num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)

# Display output
# cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
cv2.imwrite(filename, image_np)

只需要把里面涉及到路径的内容改成你自己的,就可以看到最终的测试结果啦!测试py文件可以在此下载

最后贴出我的一些测试结果。